If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x-20=0
a = 3; b = 20; c = -20;
Δ = b2-4ac
Δ = 202-4·3·(-20)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{10}}{2*3}=\frac{-20-8\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{10}}{2*3}=\frac{-20+8\sqrt{10}}{6} $
| 2x^2-16-40=0 | | 36^n=6^12 | | 3x^2-13=230 | | 6/(x+2)=5/4x | | 3x+2-1=60 | | 24x-12=8x+9 | | 24x+-12=8x+9 | | 28÷4=20÷4+x÷4 | | 3/8(y-72)=-16 | | 2/5=x/275 | | 6y+13=3y=5 | | 180=7x-3(6x+15) | | 0=32+2(m-6) | | t/3+3.1=-4.4 | | 0.9^x=0.5 | | x/3-5/2=6 | | 2u-46=-8(u-3) | | 7(v-9)=-4v+36 | | -13.7=y/7-2.5 | | -3(x-3)+3=-(7-x) | | 2x+30+3x-4=90 | | 4x+5+5x-2=90 | | 3x+3/2=2x+1 | | 6(y-2)+2=2(3y-5$ | | 24=2w-10 | | 6t^2-10t=-2 | | 4m–7=1 | | 2aa=5 | | 27,5x=4000+22,5x | | X+2y-8000=0 | | 3g+4=g+10 | | 4x-121/2=3x+3.5 |